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Summary. This paper analyzes the feasibility of sustaining uniformly positive 
consumption forever- even when flows of exhaustible resources are an indis- 
pensable input. The main result is a characterization of an economy's capability 
for sustaining such consumption- under quite general maintained assumptions 
on technology-in terms of a single, simple capital-resource substitution 
condition. 

L Introduction 

Ultimately, the only conceivable limit to continued economic progress is lack of 
human imagination and ingenuity. Timely accumulation of capital goods, 
including, in particular, stores of technical knowledge (concerning social as well 
as natural phenomena), can surely offset any foreseeable depletion of natural 
resources, no matter how shortsightedly or inflexibly specified. But is such propitious 
growth even within the realm of possibility? 

In order to lay a solid basis for providing precise answers to this critical 
question, we pose the following fundamental problem: Assuming a fairly unrestricted 
specification of technology- that is, a reasonably general description of an 
economy's feasible growth paths given initial stocks of both capital goods and 
exhaustible resources - what additional technological conditions governing capital- 
resource substitution determine whether the economy is capable of sustaining 
consumption - that is, of providing uniformly positive welfare - forever? 

Our solution to this problem yields - under quite general maintained assump- 
tions on technology-a single, simple substitution condition which is both 

* This is a revised version of CARESS Working Paper #79-27. An even earlier preliminary paper by 
Mitra [1] contained the seminal xdea developed more thoroughly here. Both of our research efforts 
were supported by the NSF, while much of Cass's participation took place during his tenure as a 
Sherman Fairchild Distinguished Scholar at Caltech. We thank both institutions for their support and 
encouragement. 
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necessary and sufficient for indefinitely sustained consumption. This substitution 
condition is tantamount to an easily understood growth requirement: The economy 
must be capable, starting from arbitrary, positive stocks and growing with pure, 
arithmetic accumulation, of either, at best, achieving resource independence or, at 
worst, avoiding resource exhaustion. 

Our general characterization captures the essential feature of a leading special 
case previously reported by both Solow [2] and Stiglitz [3, 4]: When technology 
is specifically represented in terms of an aggregative neoclassical production 
function with constant elasticity of substitution, our characterization is equivalent 
to their condition that the elasticity of substitution be greater than one, or equal to 
one, provided, in addition, that the capital stock exponent exceed that of the 
resource flow. But our analysis also reaches far beyond this very explicit example; 
even within the confines of an aggregative specification of technology we permit 
substantial discontinuity (e.g., by admitting scale indivisibilities for capital stocks) 
as well as other significant nonconvexity (e.g., by admitting increasing returns to 
resource flows at low levels of capacity utilization). Moreover, our basic result can 
be readily modified to address the deeper problem of characterizing the techno- 
logical possibilities for continually increasing and asymptotically unbounded 
consumption, and can be easily extended to include the broader situation where 
the specification of technology involves many different commodities, both natural 
(e.g., specific mineral compounds) and produced (e.g., detailed extraction techniques). 

Our analysis focuses on a particularly suitable reformulation of the usual 
neoclassical parable. The core of the paper consists of presentation of that canonical 
model together with description of the fundamental problem (Sect. II), and state- 
ment and proof of our general characterization (Sect. III). A concluding discussion 
(Sect. IV) outlines some possible approaches for elaborating our analysis in order 
to encompass the potential for increasing and unbounded consumption as well as 
the presence of many different types of commodities. Finally, we also investigate 
the robustness of our central results to further relaxation of crucial maintained 
assumptions (Appendix). 

II. Specification of technology 

A conventional neoclassical model 

Economic activity begins in period 0, and continues unendingly over periods 
t = 0, 1, 2 . . . . .  In each period a (net) flow of final goods output y is produced from 
a flow of exhaustible resources d (for "depletion") and a previously accumulated 
stock of capital goods k (for "kapital") according to a (net) output production 
function f:R2+-oP.,. This output is then allocated between consumption goods c 
and (net) investment goods i. Thus, the stock of exhaustible resources available 
next period is simply those not utilized this period, while the stock of capital goods 
available next period consists of those utilized this period plus investment goods 
produced this period (possibly a negative quantity). The economy's intertemporal 
production possibilities are further constrained by its historically given initial 
stocks of both exhaustible resources ~ and capital goods k. 
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These possibilities can be concisely represented by defining the economy's 
feasible growth paths as the solutions to the dynamical system 

f (ct, dt, kt)>O, c t + i t < y t = f ( d t ,  kt) and k t + l = k t + i t  for t > 0  

Notice that (1) presumes the availability of free disposal for both output and initial 
stocks. Standard specifications of the economy's static technology require that 
f e C  be everywhere increasing in d, initially increasing in k (at least when d > 0), 
and jointly concave (and perhaps linear homogeneous) in d and k, and that it 
satisfies f(0, 0) = 0 and f(d,  k) > - k. For our particular purposes, such neoclassical 
assumptions lead to three essentially different cases. These are exemplified in 
Fig. 1, and will be distinguished more precisely in the following subsection. 

The model detailed below, the formulation we will actually concentrate 
attention on, is substantially more general than the sort of conventional parable 
just sketched. However, both models share several basic features which are well 
worth remarking at the outset: 

1. Time is treated as a discrete variable. While such treatment facilitates the use 
of elementary analytic techniques, it also necessitates the imposition of a potentially 
objectionable restriction on the applicability of our central characterization. The 
role of this additional restriction, which essentially amounts to the technological 
assumption that isoquants are downward sloping, is explored in some detail in 
the Appendix. In particular, there we will indicate how our general theorem can 
be simplified conceptually- though, in terms of the mathematical foundations 
required, not analytically- by switching to a continuous time framework, and 
thereby avoiding any such monotonicity requirement altogether. 

2. Technology is specified in terms of  net rather than gross outputs. In principle, 
such general specification is merely a matter of notation. Thus, for instance, in 
describing the conventional neoclassical formulation, we could have equally well 
defined f in terms of a (gross) output production function g:R~ ~ R +  together 
with a (real) capital depreciation schedule fi:R 2 ~ R +  by the identity f - g -  
(requiring, in particular, that 6(d, k)< k). 

In practice, however, our particular specification is possibly a matter of 
siabstance, since it ostensibly permits direct conversion of undepreciated capital 
goods (represented by the difference k -  6(d, k)) into consumption goods. Thus, 
for instance, in (1) (net) investment goods output need only satisfy the constraint 

- kt < it _-< Yt, and hence consumption goods output the constraint 

(gross) final goods undepreciated capital goods 

O<=ct<=yt-it<=y~+kt = "[yt+~(dt, kt)'] + ikt-t~(dt,  kt)i 

for t > O. A broad justification for this amorphous specification will be implicit in 
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Y ~y=f (d ,k ) ,d  >0 
k 

y=f (d,k),d >0 

bl y=f(o, k ) . . . . . . . . . . .  

k k 

c . . . . . . . . . . . . . . . . . . . . .  
k 

Fig. 1 a-c. Typical examples of the standard (net) output production function, a f(0, k) < 0 for k > 0 
(and lim f(d, k) < 0 for d > 0). b f(0, k) = 0 for k > 0 (and lira f(d, k) = oo for d > 0). e f(0, k) > 0 

for k > 0 (and lim f(O, k) = oo) 
k ~  

our suggested methodology  for treating many  different types of  commodities.  A 
more  narrow justification is inherent in our  present analysis itself. I t  turns out  
that, but  for some exceptionally irregular technologies, all the growth paths we 
will consider either exhibit, or  can be easily modified to exhibit the proper ty  that  
(net) investment goods  output  is always nonnegative, so that  consumpt ion  goods  
output  is always less than (net) final goods  output.  In  other  words, what  on first 
appearance seems a substantial limitation, upon  further inspection becomes just 
an expositional convenience. 
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3. Exhaustible resources (e.g.,fossil fuel stocks) are the only primary factors explicitly 
recognized. As with the net-gross distinction, here again the initial impression is 
somewhat deceiving. For, suppose that we were equally concerned with the 
constraining influence of other primary factors, short-lived (e.g., labor service flows) 
or long-lived (e.g., land space stocks). Then, to the extent that their availability 
over time is constant, their restrictive properties could be incorporated directly 
into the description of the economy's static technology (for instance, the specification 
of f). Moreover, to the extent that variation in their availability over time is 
endogenous, their feasible (net) output flows and input stocks could be included 
along with those of any other produced factors in our ultimate generalization 
involving many different types of commodities. 

4. Allocation choices are highly aggregative. Regarding this feature, it is important 
to bear in mind a point we have already stressed: The central result for our 
canonical aggregative model largely carries over to a general disaggregative model. 
Such extension is more than simply generalization for its own sake. Indeed, it 
permits explicitly recognizing a number of basic technological considerations 
inherently related to questions concerning "the limits of growth." Specifically, by 
introducing heterogeneity of capital- beyond the present crude division between 
exhaustible resources (i.e., necessarily depletable stocks) and capital goods (i.e., 
potentially augmentable stocks) - we can expressly model such diverse phenomena 
(regarding just exhaustible resources) as (i) variability in quality, (ii) stock-flow 
interdependence, and (iii) recovery and recycling. Perhaps more critically, our 
general disaggregative model can capture significant aspects of the most funda- 
mental long-run substitution possibility of all, the offset to resource exhaustion 
provided by technical progress - at least insofar as research and development can 
be accurately portrayed as an activity involving the accumulation and utilization 
of stocks of knowledge. (Incidentally, our underlying concern with just this sort 
of generality in large part motivates our repeated emphasis on weakening the 
technological assumptions required for our analysis. Why should a growth process 
involving, say, the invention and utilization of fusion-electric power be subject 
to any of the conventionally presumed regularities, for instance, generalized 
diminishing returns?) 

Reformulation into canonical form 

Because we are primarily interested in the question of the perpetual sustainability 
of consumption, and because its resolution ultimately depends on properties of 
the asymptotic substitutability of capital for resources, it is especially convenient 
to reformulate the representation of feasible growth paths in terms of a resource 
requirement function h:H-~F,~+ with H cRxF,~+ ,  h describes the minimum 
resource depletion required to yield a given output level from a given capital stock 
(together with fixed primary factors), while H circumscribes the conceivable pairs 
of output level and capital stock. For instance, starting with the output production 
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function f, we would have, formally, 

h(y, k) = minimum d subject to y < f(d, k) and d > 0 for (y, k)~H 
with 

H = {y, k): k > 0 and there exists d > 0 such that y < f(d, k)}. 

Roughly speaking, then, h is simply a "partial inverse" of f, while H is its corres- 
ponding domain. (Of course, h as well as f could be derived directly from the 
primitive set of all feasible combinations of outputs and inputs, or the technology 
set, the more basic approach we actually adopt in treating many different types 
of commodities.) 

Utilizing the definitions of these two fundamental constructs (and also 
suppressing superfluous notation for intermediate flows) it is easily verified that 
the dynamical system (1) is equivalent (but for permitting outright wastage of 
consumption goods) to the dynamical system 

f 
c~>0 and (c t+k,+l-k t ,  k,)~H for 

7 
,~=o h(ct + kt+ 1 - k,, k~) ~ ~ and ko < k. 

t=>O 

(2) 

This particular representation of feasible growth paths will be the focus of our 
investigation. Before we can proceed, however, we first need to impose some 
structure on both H and h (now listed in the natural order for detailing their 
specification). One obvious way of accomplishing this task is simply to deduce the 
properties which they inherit from standard specifications of f. It turns out that 
such structure is considerably more restrictive than absolutely necessary for our 
purposes. Thus, while we have drawn some inspiration from examples like those 
shown in Fig. 1, we have found it more appropriate to introduce our maintained 
assumptions, as it were, ab initio. 

In stating these minimal assumptions, it is convenient to have at hand specific 
notation for cross-sections of H, as well as for certain bounds related to the possible 
behavior of h. So, to begin with, we define 

and 

with 

H(y) = {k: (y, k)eH} 

H(k) = {y: (y, k)sH} 

= sup ty :  y __> 0 and 

k(y) = inf ~k: k~H(y) and inf 
k'eH(y),k" <-_ k 

k =  inf k(y), 
y>O 

for y~lR, 

for kEN+, 

inf h(y,k')=O}, 
k'eH(y) 

h(y,k ' )=O~ for y e N +  
) 
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where, by convention,  inf~b = - sup ~b = oo. To interpret these various bounds, we 
ignore the (economically) implausible but  (mathematically) tractable irregularity 
where, for some 0 < y < y, k (y )<  oo but  either (y,k_(y))q~H or (y,k(y))eH and 
h(y, _k(y))> 0. Then, )3 represents the upper  bound  (possibly zero) on sustainable 
output  levels, i.e., output  levels which can be p r o d u c e d -  perhaps only from 
unlimited capital s t o c k s -  without any resource depletion, while k represents the 
lower bound  (possibly infinity) on sustaining capital stocks, i.e., minimum capital 
stocks from which positive output  levels can be produced without any resource 
d e p l e t i o n -  themselves denoted _k(y) for y > 0. Figure 2, which replicates the 
examples of Fig. 1, but now labelled in terms of h rather  than f ,  suggests the 
intuitive basis for these definitions. On the one hand, when )7 = 0 (that is, as 
displayed in Fig. 2a, when every isoquant  lies uniformly above the k-axis) sustained 
consumption appears a very unlikely prospect. On the other, when k < ~ (that 

=h (y,k),y >0 

/h(y,u)du =cO 

k' k 
, I  

d=h(y,k),k>O 

Y 
'•=h(y, 

k),y>O d l ~ ( y , k ) ,  k>O 
I OD 

k' k y 

=h(y,k), y>O . 
ek_(y) 

,Jh(y,u)du<OO 
I k 

k' k(y) k 

d= h (y,k),k>O 

/ 
Y 

Fig. 2a-e. Corresponding examples of our canonical resource requirement function, a 37=0 and 
_k = _k(y) = oo. b )7 > 0 and _k = _k(y) = oo. e 37 = oo and 0 = k < k(y) < 
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is, as displayed in Fig. 2c, when some isoquant intersects the k-axis) it appears a 
very likely one. (Both conjectures are in fact correct under the neoclassical 
assumptions listed earlier.) While our analysis is therefore primarily directed toward 
the less obvious, more important intermediate case in which 37 > 0 and k--= oo 
(displayed in Fig. 2b), our results also cover these two polar cases. 

Regarding the domain and properties of the resource requirement function 
itself, we assume, for H, that 

HI. For every 0 < k < _k, there exists y > 0 such that (y,k)eH; and 
H2. If (y, k)~H, 0 < y' <= y and k' >__ k, then (y', k')~H; 

and, for h, that 

hl. For every k > 0, h is increasing in y on {y:y~H(k) and y > 0}; 
h2. If 3~ > 0, then, for every 0 < y < y, h is decreasing- and hence integrable 

(in the sense of Riemann) - in k on (k: k~H(y) and k < k(y)}; and 
h3. If ~ > 0, then there is a positive constant v > 0 with the property that, for 

every k > 0, 

y'~H(k) and O<y"<=y'~ .h(y''k- )>v h(y''k~) 
y' y" 

Note for future reference that H2 and hl entail that k(y) is increasing in y, so that, 
in particular, 

_k(0) <__ lim _k(y) = inf k(y) = k < _k(y) for y > 0. 
y - * O  + y > 0  - 

We reemphasize the fact that these maintained assumptions, though consistent 
with conventional neoclassical assumptions (the "leading case" referred to below), 
are very much weaker. Indeed, as should become apparent from the subsequent 
analysis, they are so unrestrictive as to be almost, but not quite completely 
unobjectionable. With this assertion clearly in mind, then, consider the following 
interpretive comments: (i) Both H1 and H2 are innocuous, as well as transparent, 
since they simply state, respectively, that some positive output level can be produced 
from every positive, non-sustaining capital stock, and that both output and capital 
can be disposed o f -  provided, in the background, there is sufficient accompanying 
depletion. (ii) hl  and h2 then sharpen the terms on which (given a feasible produc- 
tion point) either less output can be produced or more capital employed, since, 
at a minimum, they amount, respectively, to free disposal of output and (within 
the limits specified) free disposal of capital. (iii) Of course, hl  also embodies the 
obvious natural productivity hypothesis concerning increased resource utilization 
(and, to a somewhat lesser degree, presuming hl obtains, h2 one obvious possible 
productivity hypothesis concerning increased capital intensity). That is, hl  entails 
that additional depletion can typically yield additional output, everything else the 
same (and h2, again within the limits specified, that capital goods can typically 
replace exhaustible resources, everything else the same). (iv) In particular, hl  and 
h2 would both be true in the leading case where, for every k >= 0, h is increasing 
in y on H(k), i.e., where the labelling of isoquants is increasing in the northeast 
direction, and where, for every y > 0, h is decreasing in k on H(y), i.e., where 
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isoquants are downward sloping, respectively. Recall, however, that the isoquants 
in question represent constant net final goods output, so that even as it stands, 
h2 is not indisputable; with capital deepening, greater depletion may be required 
simply to offset higher depreciation, everything else the same. (v) Finally, h3 is 
very mild version of the classical law of diminishing returns to a single factor. As 
we shall demonstrate later on, its basic purpose is to rule out the extremely 
implausible possibility that average returns to exhaustible resources are asymptoti- 
cally unbounded. In particular, h3 would be true in the leading case where, for 
every k > 0, h(0, k)= 0 and h is convex in y on H(k), i.e., where capital can be 
costlessly stored and depletion is in fact subject to universal diminishing returns. 

Much of our lengthy analysis revolves around the two assumptions h2 and 
h3. Thus, it is worth emphasizing again that h2 can be replaced by a much weaker 
regularity requirement in continuous time (see h2' in the Appendix), and stressing 
explicitly that h3 can be replaced by an even weaker curvature condition upon 
deeper investigation (see h3' in the Appendix). 

The basic nature of our maintained assumptions has already been exhibited 
by Figs. 1 and 2; various aspects of their generality are now highlighted by Fig. 3. 
Notice especially that no continuity restrictions (beyond those implicit in the 
monotonicity assumptions) are imposed on either resource utilization or capital 
intensity, and that, as previously remarked, only the mildest convexity restriction 
is imposed on resource utilization. 

The fundamental existence problem 

Given the description of all feasible growth paths together with the specification 
of the resource requirement function, our goal is to characterize the static techno- 
logies (represented by H and h) which admit the possibility of indefinitely sustained 
consumption. Specifically, we seek substitution conditions on h (additional to the 
maintained assumptions hl, h2 and h3) which are both necessary and sufficient to 
9uarantee that, for every positive pair of initial stocks (7, k) >> 0, there exists a feasible 
9rowth path (i.e., a solution to (2)) { (ct, kO } along which consumption 9oods output 
is uniformly positive infc t = c > 0. Utilizing H2 and hl in simplifying (2), this 

t_>O 

fundamental existence problem can be succinctly stated as follows: Find substi- 
tution conditions, say SC, with the property that 

( f o r  every (7, k) > 0 there exists (c, {k,}) such that 

] ( c + k t + l - k ,  kt)~H for t > 0  

O, t h ( c + k t + l - k t ,  kt)<=7 and ko__<k 

if and only if 
h satisfies SC. 

A word of caution: Our concern is with the existence not the magnitude of 
indefinitely sustained consumption. It is obvious to us - as well as to many others 
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k_(y) 

J d= h(y,k),y >0 

slope a ~ d =  h (y,k),k>O / 
for assumption h3, u < - a l e  < I 

Y 

C 

I 

i ~ - - ' ~ ,  d= h (y,k),y>O 

k 

Fig, 3 a-c,  Various productivity phenomena 
encompassed by the technological assumptions. 
a Substantial depletion required to offset 
depreciation with large stocks of capital goods. 
b Increasing returns to resources at low levels 
of capacity utilization, e Significant indivisibilities 
in substituting capital for resources 

who have commented on our analysis-  that an economy may well be viable in 
/ \ 

our narrow technological sense (i.e., inf c, may be positive] and yet not in some 
\ t>0  / 

broad "socio-biologicar' sense (e.g., (cr} may be insufficient to forestall humanity's 
extinction). (All this, of course, presumes that one can conceivably define suitable 
units for prejudging the effects of alternative streams of consumption goods output, 
a point we shall return to in Sect. IV.) Nonetheless, we do not apologize for this 
seemingly damaging inadequacy in our approach. Rather, we argue that our tack 
is the only sensible course to pursue. We simply cannot begin to address (possibly) 
more germane questions without already having solved this fundamental existence 
problem. (See too the closely related remarks in Solow [-3, especially p. 37].) 
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III. A complete characterization 

Our basic theorem is a complete characterization of the circumstances under which 
it is feasible to sustain uniformly positive consumption forever, stated in terms of 
just a single capital-resource substitution condition. 

Substitution Condition. For every 0 < k < _/5, 

k(y) 
lim 1/y I h(y,u)du = 0. (SC) 

Y ~0+ k 

That is, formally, we will establish the following simple sustainability equivalence. 

Sustainability Theorem. Suppose H satisfies H1-H2 and h satisfies hl-h3. Then 
(3) obtains if and only if (SC) obtains. 

Before detailing the proof of this fundamental result, it is worthwhile digressing 
a bit to interpret (and, indirectly, to motivate) the crucial substitution condition 
(SC) itself. This can be usefully accomplished on at least two distinct levels: 

1. The technical interpretation. Note first that if _k = 0, then (SC) is vacuously true. 
So we need only be concerned with the situation in which k > 0. Now, the integral 
in (SC) is nothing more than the area, relative to the k-axes, under the y-level 
isoquant from arbitrary k < _k such that keH(y), say k', to _k(y). (Refer back to 
Fig. 2.) Hence, the limit in (SC) is nothing more than the requirement that this 
area be finite for small positive y, and that it approach zero faster than y does. 

The geometry of this interpretation is especially clear when h is linear homo- 
geneous, i.e., when there are constant returns to scale, since then we can convert 
(SC) into a substitution condition involving only the unit-level isoquant. Briefly, 
this can be seen as follows: h linear homogeneous implies k(y) linear homogeneous 
implies (i) _k > 0 if and only if k = k(y) = oe for y > 0, while (ii) _k = 0 if an only if 
_k _< _k(y)< oe for y > 0. Thus, when k > 0, the integral in (SC) can be rewritten 
(using the change of variable v = u/y) 

~-~'~ 7 7 ~-"~S h(1,v)dv (4) I h(y, u)du = y2 J h(1, u/y)du/y = y2 J h(1, v)dv = y2 
k k k/y k/y 

and (SC) will be verified (substituting from (4) into (SC)) if and only if 

for every 0 < k < k(1) such that k~H(1), 

k(1) 
h(1, u)du < oo, (5) 

k 

while, when k = 0 (5) is immediately verified. In short, under this additional 
homogeneity property, (SC) is equivalent to (5), which is nothing more than the 
requirement that the area "under" the unit-level isoquant be finite. (See too the 
companion discussion in Mitra I-2, especially pp. 15-16].) 

2. The economic interpretation. For this interpretation we again ignore the 
implausible irregularity where _k(y) < oe but either (y, k_(y))q~H or (y, k_(y))eH and 
h(y,k_(y))>O. (It is, nonetheless, covered by the Sustainability Theorem.) So, 



130 D. Cass and T. Mitra 

consider only situations in which either k_(y)< oo, (y, k_(y))eH and h(y, _k(y))= 0 
or _k(y) = oo. Also, consider only growth paths exhibiting pure, arithmetic accumula- 
tion, that is satisfying the two additional properties 

c t = 0  for t > 0  (6) 
and, for some y > 0, 

ko<=k_(y) and k t+ l=~  k t + y  for 0__<t<ty 

(_k(y) otherwise, (7) 

where ty = sup{t: t > 0 and t <= (k(y) - ko)/y}. (The descriptive label is slightly 
inappropriate when _k(y) < oo and therefore ty < oo.) Then it can be shown that, 
for every positive pair of initial stocks (~, ~c) >> 0, there exists a feasible growth path 
exhibiting pure, arithmetic accumulation (i.e., a solution to (2) satisfying (6)-(7)) {k,} 
if and only ifh satisfies (SC). In other words, basically repeating ourselves from the 
Introduction, (SC) essentially amounts to the requirement that the economy must 
be capable, starting from arbitrary, positive stocks and growing with pure, 
arithmetic accumulation, of either, at best, achieving resource independence (when 
_k < oo and thus, typically, ty < ~ )  or, at worst, avoiding resource exhaustion (when 
_k = oo and thus, necessarily, ty = c~). 

The proof of this interesting interpretive equivalence is a somewhat simplified 
(but nonetheless complicated) version of the proof of our main result. For this 
reason we will content ourselves with merely sketching the argument for the 
intermediate case in which we have/p > 0 as well as k-= oo (and hence the hypothesis 
in both h2 and h3 as well as k (y)=  oo in (SC)). 

Sufficiency. We want to show that if h satisfies (SC), then there exists a solution 
to (2) satisfying (6)-(7). Toward this end,. pick ko = k, and 0 < y < 35 such that 
(y, k -  y)eH [using H1 and H2] and 

or) 

1/y_~ h(y,u)du < ~ (8) 
k - y  

[using H2 and (SC)]. Then, given these particular values of k o and y, the equations 
(6)-(7) themselves yield a solution to (2), since (y, k - y ) e H  implies (ct + kt + 1 - k,, k,) = 
(y, k +  yt)~H for t >_ 0 [using H2], while 

h (c ,+k t+ , - k t ,  kt)= ~ h(y ,k+ yt) 
t = O  t = O  

= 1/y ~ h(y ,k+yt )y  
t = O  

co 

<= 1/y_~ h(y, u)du [using h2] 
k - y  

< ~. [using (8)] 

Necessity. We want to show that if, for every (~, k')>> 0, there exists a solution to 
(2) satisfying (6)-(7), then h satisfies (SC). Toward this end, given arbitrary (~, k') >> 0, 
suppose we have a solution to (2) satisfying (6)-(7). Then, the resource bound in 
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(2) yields the following chain of inequalities: 

h(q + k~+ i - kt, kt) 
t=O 

= ~ h(y,k o+yt)  
t=0 

= ~ h (y ' k~  

t=o  Y 

>v/y' ~, h(y',ko + yt)y for O<y'<min{y,37} 
t=O 

> v/y' S h(y',u)du 
ko 

> v/y' S h(y', u)du 
~ 
k 

> O, 

[using h3] 

[using h2] 

[since ko </~] 

or, ignoring intermediate steps (and rearranging constant terms), the following 
inequality: 

for every 0 < y' < min { y, 97}, 

0 < 1/y' ~. h(y', u)du < f/v. (9) 
k 

But, because we started with arbitrary (~, k)>> 0, (9) is simply one equivalent 
restatement of (SC) in "e - 6" form. II 

One crucial step in both sides of the foregoing argument merits explicit 
comment. In order to go from sums to integrals we used the elementary result for 
monotone functions that, under the conclusion of h2, 

for every kiEH(y) such that U <  _k(y), i =  1, 2, 
k2 

h(y, k2)(k 2 - k 1) < ~ h(y, u)du < h(y, ki)(k ~ - kl). 
k i  

This is the characteristic role which such restriction plays in our analysis, explaining 
why it can be dispensed within continuous time, where sums are naturally replaced 
by integrals at the outset. (The sufficiency argument for the Sustainability Theorem 
together with the necessity counterexamples in the Appendix will delimit the extent 
to which h2 can be dispensed with in discrete time.) 

A final aside: It is straightforward but tedious to show that, when h corresponds 
to f with constant elasticity of substitution a > 0, say, given arbitrary 0 < 6 < 1 
and p > - 1, 

f(d, k) = [(1 - 6)d -p + 6k -~ - ~/p 
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with 

a = 1/(1 + p), 

h satisfies (SC) if and only if a > 1 or a = 1 and 6 > 1/2. The details of verifying 
this relationship (between our theorem and the Solow-Stiglitz example) are left 
as an exercise for the reader. 

We are now ready to proceed with the 

Proof of the Sustainability Theorem. Sufficiency. We will show that, under the 
maintained assumptions, the substitution condition (SC) can be used to construct 
a solution to (2) satisfying c t -- c > 0 for t > 0, that is, a solution to the dynamical 
system 

[ ( c + k t + t - k , k ~ ) e H  for t_>0 

and (10) 

c > 0 , ~ h ( c + k ~ + l - k , , k ~ ) < f  and ko<k .  
t = O  

In fact, we will show that this construction can be completed without any reference 
to either h2 or h3. 

There are two cases to consider, one (_k = 0) trivial, the other (_k > 0) not. In 
both cases the argument is slightly complicated by the possibility mentioned twice 
earlier, that _k(y)< ~ but either (y,k_(y))(~H or (y,k_(y))eH and h(y,k_(y))>O. 
Examples of resource requirement functions exhibiting these sorts of irregularity 
are illustrated in Fig. 4. 

Case 1. k = O. 

Pick {at} such that at > 0 for t > 0 and ~ e, < ~ (e.g., at = ab ~ with 0 < b < 1 and 
t = O  

0 < a < ( 1 -  b)f), and using the supposition of this case, y > 0 such that k (y )<  
k -  y/4. Then, appealing to the definition of k(y), define {kt} such that 

(y,k,)eI-1, k ( y ) - y / 4 < k , < k ( y ) + y / 4  and h(y,k,)<~z, for t > 0  

with corresponding 

e t = y - ( k t + l - k t )  for t > 0 .  

It follows that c~ > y/2 > 0 and (c~ + k~+ 1 - k ,  k~) = (y, k,)eH for t > 0, while 

~ h(y, k t )~ ~ o~,<-_f 
t = 0  t = 0  

and ko _-< k, that is, that {(ct, kt)} is a solution to (2). Hence (c, {k~}) with c = y/2 <= ct 
for t > 0 is a solution to (10) [using H2 and hl] .  

Case 2. k > O. 

Pick {at} such that ct t > 0 for t >__ 0 and ~ ct~ < f/2, 0 < k </~ such that k < _k (without 
t = 0  

loss of generality, k = k'), and 0 < 2 < 1/2 and y > 0 such that (y, k -  2y)sH [using 
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, ~ H ( y ]  d=h(y 'k)  

k'(y) k 

b 

k(y) 

d=h (y,k) 

Fig. 4a, b. Illustration of the irregularity 
involved in the proof of sufficiency, a k(y) < o0 
but (y,k(y))r b k(y)< Go but (y,k_(y))eH 
and h(y,k_(y)) > 0 

H1 and H2] and 
k(y) 

1/2y_ I h(y,u)du <_ ~/2 
k - ~,y 

[using H2 and (SC)]. Then, proceed to define {k,} inductively as follows: First, 
for t = 0, pick ko such that k ' -  2y < ko < k" and 

so that 

o r  

h(y, ko) - ~to <= inf h(y, k), 
k - ) ~ y < = k < k  

[h(y, k o ) - e o ] 2 y N  ~ i h(y ,k  du ~ h (y ,u )du .  

h(y, ko) <= 1/2y ~ h(y,u)du + ~o. (11) 
k - ,~y 

Then, for t + 1 > 0, given k~ such that kt + 22y < k_(y) (e.g., when k(y) = ~),  pick 
kt + 1 such that kt + 2y < kt + 1 ~ kt + 22y and 

h(y, kt+~)-~z+~ <= inf h(y,k), 
kt + 2y<=k < k t  + 2 2 y  
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so that 

2y < k, + 1 - k t  < 22y < y 

and 

kt + 2,~,y [- -I kt + 2),y 

[h(y, kt+l)-ct,+x]2y< S ] inf h(y,k)Jdu< ~ h(y,u)du 
kt + ~,y [_kt + 2y<~k <kt + 2,~y kt + ~,y 

o r  

(12) 

kt +2&y 

h(y, kt+l)<l/~'Y S h(y,u)du+c~t+l" 
kt+2y 

(13) 

Finally, for t + 1 > 0, given k t such that k t < k,_ 1 + 22y < _k(y) < k t + 22y (for 
convenience, defining k_ 1 = k ' -  22y), pick ks for s > t + 1 such that kt < ks < k, + 
22y, so that 

ks -ks - z  < Iks-k,-11 < 22y < y, (14) 

and 

h(y,k~)<~ s. (15) 

Examples of such sequences {kt} in the two possible cases (k(y)= oe and 
k_(y) < oo) are illustrated in Fig. 5. 

Given our initial specifications of {ctt}, 2 and y, it follows from the particulars 
of this construction (especially those represented by the inequalities (11)-(15)) that 

~ ~ k )  

k o k I / ] /  k? k , , , , , , , , t,~l 

'k-Xy ' '~' ko+~.y ko+2Xy kl+Xy kt_l+2)~y kt+Xy kt+2),y -k 

~ d  =h (y,k)  

A kt ks~s>t 
b 

kt_i+2~.y kt+ky k(y) kt+2)~y k 

Fig. 5 a, b. Illustration of the construction employed in the proof of sufficiency, a _k(y) = oe. b _k(y) < oe 
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{(ct, k,) } with c t = y - ( k t + i - k  J for t > O  is a solution to (2), since 
c~ = y -- (kt+ t - kt) > (1 - 22)y > 0 and (6 + k,+ 1 - k ,  kt) = (y, kJ~H for t > 0, while 

h ( c t + k t + l - k t ,  kt)= ~ h(y, kt) 
t=O t=O 

F kt-l+22y 1 
< E [1 /2y  ~ h(y, u)du + ~, 

{t:t~0 and kt- 1 +22y=<k_(Y)} m kt- t +2y 

+ E 
{t:t~O and kt- l + 2,~y>k(y)} 

~(Y) ~ ,  
<= 1/2y. ~ h(y, u)du + a t 

k-,~y t=O 

< f  

and ko__</~. Hence, (c,{kt}) with c = ( 1 - 2 2 ) y < c t  for t_>0 is a solution to (10) 
[using H2 and hl].  

Remarks. We have already noted that neither h2 nor h3 plays any part whatsoever 
in the preceding proof. Moreover, since hl only appears in the final scene of that 
argument, it is clear that even this assumption, innocuous as it is, can be retired 
from the s t age -  provided that the constancy requirement ct = c > 0 for t > 0 is 
replaced by the less restrictive (but equally meaningful) uniformity requirement 
inf c, = c > 0. Furthermore, in somewhat the same spirit, it turns out that the 
t ~ o  

substitution condition (SC) itself can be weakened, by replacing "lira" with "lira inf" 
(for necessity as well as sufficiency), a development we will discuss further in the 
Appendix. 

It is also worth noting that the foregoing construction can be easily simplified 
to yield a solution to (2) satisfying (6)-(7) when h does in fact exhibit the mono- 
tonicity property h2 (without the openness irregularity illustrated in Fig. 4). This 
generalization of the interpretive sufficiency argument presented earlier is based 
on the readily verified observation that (SC) entails ~ > 0, so that in defining {kt} 
above we can choose 0 <  y <  ~, 2 =  1/2 and-given that h satisfies h2-k~ = 
min {kt+ 1 + Y, _k(y)} (with k_ I = k ' -  Y) for t __ 0. 

Necessity. This proof naturally decomposes into two steps, the first relying on 
neither h2 nor h3, the second relying, in a fundamental way, on both assumptions. 
To underline this distinction (which is also convenient in developing the parallel 
argument for continuous time) we present the first as a separate result. 

Lemma. Suppose H satisfies H2 and h satisfies hl. Given arbitrary (f, ~:)>> O, /f 
(c, {kt}) is a solution to the dynamical system 

[ ( c + k t + l - k t ,  k,)~H for t>O 

and ~ (10) 

c > O , ~ h ( e + k t +  1 - k t , k t ) < f  and ko<k,  
t=O 

then c <_ )7 and, for every 0 < y < c, k(y) < sup k,. 
t>=o 
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Proof of the Lemma. Suppose (c, {kt}) is a solution to (10). Let 

t+(y,z)= {t:O_< t_< z and e + kt+ 1 - k ~ >  y} 

and 

t - (y ,z)  = {0, 1 , . . . , z } - -  t+(y,~)} 

= { t : 0 _ < t < r  and c + k t + ~ - k ~ < y }  

for y e N ,  r > 0. In part icular,  the former definition reduces to 

t + ( e , r ) =  {t:O < t <<_ z and kt+ 1 - k t >  O } 

for y = c. Also let 

n [A] = number  of elements in A 

for A c {0, 1, 2 . . . .  }. Then, there are two cases to consider. 

Case 1. lim n[t+(c,r)] = o~. 
7; ~ 00 

To analyze this case, we use the fact that  the resource bound  in (10) yields the 
following chain of inequalities: 

f>_= ~ h(c + k t + l - k t ,  kt) 
t = O  

> ~ h ( c + k t + t - k t ,  kt) for r > 0  
t=O 

> ~ h ( c + k t + l - k t ,  kt) 
t~t + (c,r) 

> ~ h(y, kt) for O < y < c  [-using H2 and h l ]  
t~t + (c, f)  

> ~ inf h(y, k) 
t~t + (c,r) k e H ( y ) ,  k < s u p k t  

t ~ o  

= nit + (c, ~)] inf h(y, k). 
k~H (y ) ,  k <=supkt 

t > o  

By the supposi t ion of this case, however,  the final inequality can be true if and only if 

for every 0 < y < c, inf h(y, k) = O. (16) 
kE H  (y), k <= supkt 

t>o  

But (16) implies c < ~ - since otherwise, i.e., if ~ < c, then by virtue of the definition 
of ~ there exists fi < y' < c such that  

0 < inf h(y', k) < inf h(y', k), 
k e H ( y ' )  k e H ( y ' ) ,  k < supkt 

t>O 

contradict ing (16) - as well as, for every 0 < y < c, k(y) < sup k, - since otherwise, 
t > o  
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i.e., if there exists 0 < y' < c such that sup k, < _k(y'), then by virtue of the definition 
t > O  

of k(y') 

again contradicting (16). 

0 < inf h(y', k), 
k ~ H ( y ' ) , k  < s u p k t  

t>=O 

Case 2. lim n[t+(c,z)] < o% i.e., there exists ~ '>  0 such that 

t+(c,z)=t+(c,z ') for z > z ' .  

By the supposition of this case, we know that 

(kt+l-kt)<= ~ (k t+,-k t )=K<oo for r > 0 .  
t e t  + ( c , z )  t e t  + ( c , z ' )  

Hence, we also know that 

O<=k,:+~=ko+~(k,+l-kO=ko+ Z (kt+l-kt)+ Z (kt+l-kt) 
t = 0 t e t  + (c ,  0 l e t  - (c ,~)  

<=ko+K+ ~ (kt+~-k,) 
t e t  - (c ,~)  

or that (since tet-(c, z) implies c + kz+ 1 - kz < c implies - (k,+ 1 - k,) > 0 

0 < -  ~ (kt+l-kt)<=ko+K for z>O. 
t e t  - ( c , r )  

It then follows that 

0 < - nit-(y, z)](y - c) N -- 

or that 

O<n[t- (y , r )]<(ko+K)/ - (y-c)  for y < c , z > O .  

Thus, in this case, the resource bound 
inequalities: 

(kt+l-kt) < -  ~ (k,+~-kt)<=ko +K  
t e t -  (y,r) t e t -  ( c , z )  

f:> ~ h(c +kt+l-k,,kt) 
t = O  

>- ~ h(c + kt + 1 - k. kt) 
t = O  

> ~ h(c+kt+l-kt,  kt) 
t ~ t  + (y ,~)  

> ~ h(y, kt) 
mt + (y,r) 

> ~ inf h(y,k) 
t ~ t  + (y,c) keH(y), k < supkt 

t>O 

in (10) yields the following chain of 

for z > 0  

for 0 < y < c  

[using H2 and h l ]  
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= n[t+(y, z)] inf h(y, k) 
k~H(y), k ~ supkt 

t>=O 

= [(z + l) - n[t-(y, z)]] inf h(y, k) 
kEH(y), k =< supkt 

t=>O 

> [(z + 1) - (ko + K ) / -  (y - c)] inf h(y, k). 
keH(y), k =< supkt 

t>O 

As before, the final inequality entails the desired conclusion. �9 

In order to complete the proof of necessity, now suppose that k > 0 and that, 
given arbitrary ~ > 0  and O < k <  _/5, (c,{kt}) is a solution to (10)_ Utilizing the 
Lemma, we will show that the existence of such a feasible growth path yields the 
inequality 

k_(y) 

for every 0 < y < c ,  0 <  1/y ~_ h(y,u)du<=f/v (17) 
k 

(recalling the introduction of the constant r > 0 in h3). But, as in the interpretive 
necessity argument presented earlier, (17) is simply one equivalent restatement of 
(SC) in "e - 5" form. 

So, given arbitrary 0 < y < c, consider the two possible cases 

Case 1. k t ~ k_(y) for some t > 0, i.e., there exists ty > 0 such that 

> y) according as t = ty (18) 

and 

Case 2. kt < _k(y) for every t => 0, i.e., by virtue of the second property asserted in 
the Lemma, 

k t<_k(y) for t > 0  but supkt=_k(y). (19) 
t>O 

Bear in mind that in both cases y is fixed for the purposes of this analysis, and 
that, by virtue of the first property asserted in the Lemma, in both cases the 
triggering hypothesis of both h2 and h3 is satisfied. 

Focus first on the possibility described by (18), and let 

t+(tr) = {t:0 <= t < t~ and kt+ 1 - k t>=0} 

(noticing that, by the nature of this case, t y -  1 ~t+(ty)) and 

fh(y,~c) for 0_<k_< 
k) 

(h(y,k) for k_>_ 

(noticing that, again by the nature of this case, there must exist 0 __< t' < ty such 
that kt,<=k, k c + l - k c > O  and, since we have 0 < y < c ,  ( y + k c + l - k c ,  kc)eH 
[using H2], which implies that (y,'k)~H [using H2], which implies that h is 
well-defined and decreasing in k on [0, _k(y)) [using H2 and h2]). Then, in this case 
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~_(y) 

~ v/y f 
minkt 

O<t<ty 

the resource bound in (10) yields the following chain of inequalities: 
o0 

>- Z h(c + k,+ 1 - k,, k,) 
t=O 

>__ ~ h ( c + k , + l - - G k 3  
tEt + (ty) 

~ h ( y + k t + l - k t ,  k,) [using H2 and hl]  
tet + (ty) 

h(y + k t + 1 - -  k t ,  k t )  
> Y, (k,,l k,) 

> ~ v h(y, k,) (k,+ 1 - kt) [using h3] 
tet + (ty) y 

v/y ~ h(y,k,)(k,+~ - kt) [using h2] 
tet + (ty) 

t y -  1 

> v/y ~, h(y,k,)(kt+ 1 -- kt) 
t=O 

[since 0 < t < t r but tr - kt < 0] 

Ft :~-2  1 
v/y L ,~o ~(y' kt)(kt+1 - kt) + "h(y, kt _ O(k(y) - k~,_ i) 

[ s i n c e  k t ,  _ 1 < k_(y) < k t ,  ] 

[ ] - -  l i r  ! since 0 _< k', k" < k(y) ~ h(.v, k )(k - k ) = ~ h(y, u)du 

[ ] > v/y S h(y,u)du since min kt < 
O < t < t y  

>0. 

These in turn immediately yield the desired conclusion in (17). 
For the possibility described by (19), the argument is essentially the same, but 

formulated in terms of the subsets of periods 

t + ( ~ ) = { t : O < t < ~ a n d k t + l - k t > O }  for ~ 0 ,  

and completed by going from the chain of inequalities 
max k, 

f >  h ( c + k t . l - k , , k , ) > . . . ~ v / y  _ y,u)du for z > 0  
t=O k 

to the desired conclusion in (17) by means of (19) 
super 
t _> o k_(y) 

k k 
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Remarks. The essential idea in the preceding proofis to go from the resource bound 
in (10) (or, more accurately, (3)) to the integral limit in (SC). The crucial steps in this 
logical progression involve replacing "h(c + kt+ l - k,, k~)' by "h(y, kt)(k~+ 1 -  kt)/Y" 
and " ~ "  by "S", utilizing, respectively, h3 and h2. Shortly we will demonstrate 
that this particular procedure is not accidental, that these pivotal assumptions are 
in fact fundamental to the result. Less apparent is the role of hl. However, it too 
provides indispensable support, as we shall also soon demonstrate. Finally, while 
H1 plays no part whatsoever in the necessity deduction, quite obviously it was 
essential in the sufficiency construction, since without it, so to speak, the economy 
may never leave - or, for that matter, even reach - the starting gate. For this reason 
alone, we have little more to say about this assumption-  just as, for an equally 
compelling reason (namely, that it is basically unimpeachable), we will also have 
little more to say about H2. 

IV. Two possible generalizations 

Our purpose in this final section is to outline two of the more interesting 
generalizations of our analysis. These involve first, the potential for increasing and 
unbounded consumption, and second, the presence of many different commodities. 
Our treatment is only intended to be suggestive, not exhaustive. 

Increasing and unbounded consumption 

The essential idea here is to tie consumption to the level of the capital stock, and 
then to characterize the growth paths exhibiting increasing and unbounded growth. 
For simplicity we again focus on the intermediate case in which ;f > 0 as well as 
k = o o .  

So now think of c, = constant-q$(k,), where 4>: R+ ~ R  is strictly increasing 
and satisfies, say, ~b(0)= 1 and also q$(oo)= oo. Then, in effect strengthening H1 
and h2 to encompass 4) as well as h, suppose that 

for every k > 0 there is a positive constant c > 0 such that 

(c'c~(k'), k')~H for k' _>_ k, 0 < e' < e (20) 

and 

h(c'f~(k'), k')/c'qS(k') is decreasing in k' for k' > k, 

Finally, consider feasible growth paths of the specific form 

k , + l - k , > O  and ( c (J (k , )+k ,+l -k , , k t )~H for 

lira kt = 

and 

c > O, ~ h(edp(k~) + kt + 1 - kt, k~) <= 7 and ko =< k. 
t = O  

0 < c' < c. (21) 

t > 0 ,  

(22) 
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The analogue of our Sustainability Theorem obviously also requires a stronger 
Substitution Condition, namely, that for every k > 0, 

h(y(a(u), U) 
lim J du = 0. (SC s) 

y~o+ k y ~ ( u )  

In these terms the following result is easily demonstrated. 

"Growth" Theorem. For every (L To)>> 0 there exists (c, {kt}) satisfyin9 (22) if and 
only if (SC ~) obtains. 

Proof of the "Growth" Theorem. Sufficiency. Pick y > 0 such that 0 < y~b(k) < k, 
(yc~(k), k)~H for k > To/2 [using (20)] and 

h(yc~(u), U) 
j du < ?/2 (23) 

~/2 y4~(u) - 

[using (20) and (SCS)], and consider the particular growth path defined by 

go =k 
and 

kz+ ~ = kt + yc~(kt)/2 and c t = yc~(kt)/2 for t _>_ O. 

Then 

(24) 

h(c t + kt+ 1 - kt, kt) = ~, h(yc~(kt) , k,) 
t = O  t = O  

= ~, h(y(~(k,), kt) 
t=o y~(kt)/2 (Ye~(kt)/2) 

< 2 ~'J h(Y(9(u)'U)du [using (21)] 
- ~-r6(~)/2 y(a(u) 

h(yc~(u), U) 
< 2 ~ du 

k-/2 yq~(U) 

< ~. [using (23)] 

Thus, (24) yields a solution to (22) with c = y/2. 

Necessity. Suppose that (22) has a solution 
straightforward to show that this implies that 

for arbitrary (Lk)>>0. It is 

for every 0 < y < c, i h(ydp(U),y~(u) u) du =< ?/v: 

>_ ~ h(cc~(kt) + kt +1 - kt, kt) 
t = O  
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> ~ h(y05(k , )+k t+t -k t ,  k,) for 0 < y < c  
t = 0  

~, h(y05(kt) + k t + ~ - kt, kt) - k,) 
-->,:o /k,+l 

h(y 05( kt), k,) 
_~ v (kt + 1 - kt) 

t=o y05(k,) 

> v i h(y05(u), u) du. 
y05(u) 

[using H2 and hl ]  

[using h3] 

[using (21)] [] 

requirement that the capital stock be It is worth no t ing -  concerning the 
increasing and unbounded - that when, say, 05 is uniformly Lipschitzian (i.e., there 
is a positive constant 2 > 0 such that 1 05(k') - 05(k")1 < 21k' - k"l for k', k" > 0 and 
k' ~ k") (22) has a solution if and only if 

f c 0 5 ( k t ) + k t + l - k t ,  k t )eH for t > O  
and 

c>O, t=o~ h(c05(k t )+k t+l -k t ,  k t )<F and k o < k  

has a solution. In other words, when natural resources are actually indispensable 
(in the sense that k = ~), unlimited growth is equally indispensable. This result 
(whose proof we will not detail) also means that the preceding argument provides 
a simpler demonstration of our Sustainability Theorem for this intermediate case 
(by simply taking 05(k)= 1 for k > 0). 

Many  types of  commodities 

For this kind of generalization, the crucial problem is to guarantee that the 
"natural" aggregation procedure provides suitable approximation. Without any 
pretense of presenting the most delicate analysis possible, we consider the following 
basic set-up. 

There are g >  1 types of consumption goods with flows denoted C =  
(c 1, c z . . . . .  cr m > 1 types of exhaustible resources with (input) flows denoted 
D = (d 1, d 2 , . . . ,  dm)e~.m+ and stocks denoted R = (r 1, r 2 . . . . .  r")~R'~, and n > 1 types 
of capital goods with (net output) flows denoted Z = (z 1, z 2 . . . . .  z")ER" and (input) 
stocks denoted K = (k 1, k 2 . . . .  , k")~R"+. The (final) output of economic welfare is 
measured by a consumption index c = ~(C), where ~k: Re+ ~ R +  is a nondecreasing 
function initialized so that ~,(0)= 0, while the possibilities for converting inputs 
into (final) outputs are summarized by a technology set 

T c { ( c , Z , D , K ) ~ l l . +  x R "  x R ~  x R ~ : Z + K > = 0 } .  

Finally, given initial stocks of exhaustible resources/~ >> 0 and capital goods/ (  > 0, 
in such a setting feasible growth paths are described by 
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f (ct, K , + I - K t ,  Dt, Kt)~T for t > 0  

~ d  (25) 

~ D,_</~ and Ko<_K. 
t =  0 - -  

To relate this model to the aggregative model, we simply identify d with D.1, 
z with Z.1 and k with K.1,  where ' T '  always denotes a conformable vector of 
ones, and then define 

H- -  { (y, k)~P,~ x JR+: there exists (c, Z, D, K)~ T such that c + Z.  1 :> y and K.  1 = k} 

and 

h(y,k)=infimumD.1 on {De]R'C'(c,Z,O,K)ET, c + Z . I > y a n d K . I = k }  

for (y, k)~H. 

One set of assumptions about T which both entail our previous maintained 
assumptions and enable us to adapt our previous analysis - and which are surely 
much stronger than necessary for either purpose - are as follows: 

TO. (Inactivity) 06 T; 
T1. (Productivity) a. I f K  > 0, then there exists (c,Z,D)~P,+ x R" x R'~ such that 
(e,Z,D,K)~T, (c,Z-1)>>0 and K + Z > 0 ;  b. If (c,Z,D,K)~T, (c,Z.1)>>0 and 
K + Z > 0, then there exists (c', Z', D') ~]R + x R" x ]R~ such that (c', D', Z', K + Z)~ T, 
(c', Z ' .  1) > (c, Z .  1) and K + Z + Z' > 0; 
T2. (Disposability) There is a partition of capital goods, say, K = (Ka,K 2) = 
((kl,k2,...,k"'), (k"'+l,k"'+2,...,k")), such that if (c,Z,D,K)~T, 0 < c' <_ c, Z '<Z ,  
K 1' > K 1 and (K ~', K 2) + Z' > 0 (resp., K 2' ~ K 2 and (K a, K 2') + Z' > 0), then 

_ h , , , 1 2 '  (c', Z', D, (K 1', K 2)) ~ T) (resp., there exists D' > D such t at (c, D, Z ,  (K , K )) ~ T); 
T3. (Substitutability) There are constants 0 < M < ~ and 1 =< N < ~ such that 
for every K > 0 and associated 

(c,z,k)~{ (c,z,k)~R+ • ]R • R+" there exists (c',D',Z')~R+ x R h • ]R"r 

such that (c',Z',D',K)6T, c'>c, Z ' . l > z ,  K + Z ' > 0  and K . l = k } ,  

Mh(c + z, k/N] > infimum O'. 1 on {D'~IR'~: (c', Z', D', K)~ T, c' > c, 

Z ' . l > z  and K + Z ' > 0 } ;  

and 

T4. (Convexity) T is convex. 

Some brief remarks about this formulation. 1. As we have already stressed, when 
n > 1, the notion of capital goods is very broad. Thus, for example, these could 
in principle include such diverse commodities as exhaustible resources themselves 
(double-counted so as to permit indirect as well as direct stock-flow interaction) 
or cumulated technical knowledge. 

2. The consumption index ~ is fairly arbitrary; it could very well, for example, 
incorporate subsistence level consumption requirements. More generally, there is 
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great leeway in the choice of units for measuring the variety of commodities this 
model encompasses, though obviously the specification of T may be rendered more 
or less plausible depending on such choice. Thus, in particular, aggregation 
employing constant weights which are identically one is not really, in itself, 
especially restrictive. 

3. There is no loss of generality in assuming that/~ >> 0; an exhaustible resource 
is only relevant if it is actually available at some point. 

4. In order to allow the possibility that all capital goods - unlike consumption 
or investment goods - are not freely disposable, we require the equality constraint 
K.  1 = k (rather than the inequality K- 1 > k) in relating aggregates to disaggregates, 
for instance, in defining H and h, or in using h to provide an upper bound on 
minimal exhaustible resource requirements, as in T3. 

5. Two simple observations clearly underscore the fact that T0-T4 provide 
overkill, namely, that T2 implies a strong form of h2, 
h2 S. For every y, h is decreasing in k on H(y), 
while TO, T2 and T4 imply an extremely strong form of h3, 
h3 ~. For every k, h(0, k) = 0 and h is convex in y on H(k). 
We leave as an exercise for the reader verifying these results, as well as the two 
remaining requisites, that T l a  implies HI,  while T2 also implies H2 and hl. 

Now, once again, consider feasible growth paths of the specific form 

I (e, K t+l -Kt ,  Dt, Kt)eT for t > O  

and 

I c > 0 ,  ~ D t < / ~  and Ko=</(. 
t = 0  

(26) 

Generalized Sustainability Theorem. Suppose T satisfies TO-T4. Then, for every 
/~ >> 0 and K > 0 there exists (c, { (D t, Kt) } ) satisfying (26) if and only if ( SC) obtains. 

Proof of the Generalized Sustainability Theorem. Note that, by virtue of h2 S, 
h(y, k) = 0 for k > _k(y), so that (SC) becomes simply, for every k > 0, 

oo 

lim 1/y ~ h(y,u)du = 0 (27) 
Y -~0+ k 

Sufficiency. Let f = m i n / ~  / and ~: = B2.1/N. Then pick {%} such that %> 0 and 
i 

~ a  t < f/2, and y' > 0 such that, for every 0 < y < y', (y,k - y/2N)eH and 
t = 0  

1/y. ~ h(y,u)du <~(N/4M) (28) 
k - y / 2 N  

[using HI, H2, and (27)]. Consider, first, {kt} such that 

k t=k+y /2N  for t > 0 .  



Indefinitely sustained consumption 

It follows from (28) that for every 0 < y < y' 

h(y, k,) = (2U/y) ~ h(y, k + (y/2U)t)(y/2U) 
t = 0  t = 0  

<(2N/y) ~ h(y,u)du [usingh2 s] 
k-y/2N 

< ~/2M. 

Now define 

d(c, z, K) = infimum D'. 1 o n  
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(29) 

t ! t {D' ~F,.~" (c ,Z ,D ,K)~T, e' > c, 
Z ' . l  > z a n d K  + Z'>O} 

and 

for t > 0 ,  K t = K t _ l + Z t _ l ,  (c,,Zt, D,,Kt)ET, c t=Zt ' l=y/2 ,  K , + Z t > 0  

and D," 1 - at < d(y/2, y/2, Kt). [using Tlb  and T23. 

(31) 

Since {kt} and {Kt} have been specified so that k t = K t. I/N for t > 0, it follows 
from (30) and (31) that, for i =  1,2 . . . .  ,m, 

DI< ~ Dt'l 
t = O  t = O  

<__ ~ [d(y/2, y/2, Kt) + o~t] 
t = O  

< ~ [Mh(y, kt) + ~z] [using T3] 
t = O  

< ~ [using (29)] 

<_ R'. 

Thus, (30) and (31) yield a solution to (26) with c = y/2. 

Necessity. This follows directly upon noticing that every solution to (26_) yields a 
solution to (10) with the same c, and kt = Kt ' l  for t > 0 as well as (f,k) = (R.1,/~.1). 
And since, given our maintained assumptions, the original proof of necessity only 
depended on the existence of a solution to (10) for arbitrary (f, k)>> 0, it obviously 
applies here too, and we are fnished. �9 

for t = 0 ,  Ko=/~ ,  (co, Zo, Do,Ko)eT, co=Zo' l=y/2 ,  K o + Z o > 0  

and Do' l  - eo < d(y/2,y/2, K) [using Tla  and T2] 

(30) 

some 0 < y < y' 
for (c,z,K)eN+ x R x R~_, and consider, second, {(ct, Zt, Dt, K,) } such that for 
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Appendix 

For the sake of brevity (sic!) this is omitted. A copy may be obtained by writing 
to either of the two authors. 
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